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Abstract

We study the localization of wavefunctions for one-dimensional Schrödinger
Hamiltonians with random potentials V (x) with short-range correlations
and large local fluctuations such that

∫
dx〈V (x)V (0)〉 = ∞. A random

supersymmetric Hamiltonian is also considered. Depending on how large
the fluctuations of V (x) are, we find either new energy dependences of
the localization length, �loc ∝ E/ ln E, �loc ∝ Eμ/2 with 0 < μ < 2 or
�loc ∝ lnμ−1 E for μ > 1, or superlocalization (decay of the wavefunctions
faster than a simple exponential).

PACS numbers: 72.15.Rn, 73.20.Fz, 02.50.−r

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The phenomenon of Anderson localization [1] in one dimension has been widely studied since
the pioneering work of Mott & Twose arguing that all states are localized in one dimension
(1D) [2]. This statement was rigorously proven in [3, 4]. A general method to study the
spectral and localization properties of 1D random Hamiltonian was proposed in [5, 6]: let us
consider the one-dimensional Schrödinger Hamiltonian H = − d2

dx2 + V (x) where V (x) is a
random potential with short-range correlations. We first study the solution of the stationary
Schrödinger equation Hψ(x;E) = Eψ(x;E) satisfying ψ(0;E) = 0 and ψ ′(0;E) = 1
(differentiation with respect to x is denoted by ′). We define the Lyapunov exponent (the
inverse localization length �loc ≡ 1/γ ) as the increase rate [5, 7]

γ (E)
def= lim

x→∞
d

dx

〈
ln

√
ψ(x;E)2 +

1

E
ψ ′(x;E)2

〉
. (1)

Averaging 〈· · ·〉 is taken over realizations of the random potential. This definition becomes
more clear if the wavefunction is parametrized in terms of an envelope and an oscillating part.
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We substitute to the couple of functions (ψ,ψ ′) the variables (θ, ξ) according to

ψ(x;E) = eξ(x) sin θ(x) (2)

ψ ′(x;E) = k eξ(x) cos θ(x), (3)

where E = k2. We can rewrite the definition of the Lyapunov exponent as γ (E) = d
dx

〈ξ(x)〉.
Therefore the Lyapunov exponent gives the rate of the exponential increase of the envelope of
the wavefunction.

At high energy (compared to disorder), oscillations of the wavefunction occur on the
typical scale k−1 and the Lyapunov exponent is given by [5, 6]1

γ (E → ∞) 	 1

8k2

∫
dx〈V (x)V (0)〉 cos 2kx. (4)

The question of the present paper is to discuss the situation where the potential presents
large fluctuations such that

∫
dx〈V (x)V (0)〉 = ∞, which makes (4) inapplicable. The

integral of the correlation function may diverge for different reasons. First, it may diverge
due to long-range correlations. This corresponds to nonstationary potentials. The localization
for self-affine potentials such that 〈[V (x) − V (0)]2〉 ∝ |x|2h, with the Hurst exponent h > 0,
was studied in [9–11] (the case h = 1/2 corresponds to the Brownian case, partly studied in
[12]). This will not be the question of interest in the present paper. Another reason for the
divergence

∫
dx〈V (x)V (0)〉 = ∞ is for a potential with short-range correlations and large

local fluctuations. This is the case on which we will focus here.
For simplicity we consider a random potential V (x) uncorrelated at different positions

(vanishing correlation length). A model that realizes these conditions is the following random
potential:

V (x) =
∑

n

vnδ(x − xn), (5)

where the weights vn are chosen to be independent and identical random variables distributed
according to a distribution with power law tail

p1(v) ∝ 1

w

∣∣∣w
v

∣∣∣1+μ

for v → ±∞ (6)

with μ > 0. Here w is a scale for the weights to make the argument of the tail dimensionless.
The positions of impurities xn are also chosen to be independent random variables uniformly
distributed with a finite density ρ. When μ � 2 the second moment diverges

〈
v2

n

〉 = ∞, as
well as the correlation function of the potential (5) since 〈V (x)V (x ′)〉 = ρ

〈
v2

n

〉
δ(x − x ′).

Some exact results have been obtained for a tight binding Hamiltonian with random on-site
potential (the Anderson model) distributed according to a Cauchy law [13–15] (section 10.3
of [6] or [7]). Note also that fluctuations of the envelope of the wavefunction and conductance
statistics for this discrete model were studied for power law disorder in the recent works
[16, 17]. The Anderson model (AM) can be mapped [7] onto the problem we are interested
in here for fixed impurity positions and with μ = 1. Potentials for fixed and random impurity

1 The solution ψ(x; E) of the Cauchy problem exists for any value of the energy; it is used to construct the normalized
wavefunctions ϕ(x) of the stationary Schrödinger equation on a finite interval [0, L] satisfying boundary conditions
ϕ(0) = ϕ(L) = 0, what can only be achieved for a discrete set of energies (the Sturm–Liouville problem). From
this scheme we expect that the normalized wavefunctions present the structure ϕ(x) ∼ sin(kx + θ0) e−|x−x0|/�loc .
Note however that this simple picture neglects the important fact that, in the exponential, ξ(x) has large absolute
fluctuations despite it presents negligible fluctuations relatively to its average when

∫
dx〈V (x)V (0)〉 < ∞. These

fluctuations play a very important role since they induce large fluctuations of the normalization of the wavefunction
(see section 13.3 of [6]) [8].
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positions share some features, however, when impurities of random weights form a lattice,
xn = n/ρ, the trace of the lattice remains for arbitrary large energies (band edges remain at
kn = nπρ). This makes the definition of a high energy regime less convenient.

2. Ricatti variable

We follow the ideas introduced in [18] in order to study the spectrum, and apply them to

the localization problem. Let us introduce the Ricatti variable z(x)
def= ψ ′(x)

ψ(x)
. From the

Schrödinger equation we see that it obeys a Langevin equation z′ = −E − z2 + V (x) for
the initial condition z(0) = ∞. The distribution T (z; x) of the Ricatti variable obeys the
integro-differential equation

∂

∂x
T (z; x) = ∂

∂z
[(E + z2)T (z; x)] + ρ

∫
dv p(v)[T (z − v; x) − T (z; x)]. (7)

The first term on the right-hand side is the drift term coming from the force −(E + z2) and
the second a jump term originating from the random potential (5). For x sufficiently large, the
distribution reaches a limiting distribution T (z) for a steady current [6, 7]. Current of the
Ricatti variable through R gives the number of zeros of the wavefunction per unit length. This
is also the integrated density of states (IDoS) per unit length N(E), therefore

N(E) = (E + z2)T (z) − ρ

∫
dv p(v)

∫ z

z−v

dz′ T (z′). (8)

Imposing normalization of the solution of this integral equation gives the IDoS. Knowing the
limiting distribution T (z), the Lyapunov exponent can be obtained from [6] γ = 〈z〉. Since
T (z → ±∞) 	 N(E)/z2, in order to deal with well-defined integral it is understood that
the calculation of the Lyapunov exponent involves the antisymmetric part of the distribution:
γ = ∫

dz z 1
2 [T (z) − T (−z)]).

Let us study the high energy Lyapunov exponent. For that purpose we solve the integral
equation (8) by perturbation starting from the solution for V (x) = 0. In the absence
of the disorder (p(v) = δ(v)) we have T0(z) = 1

π
k

z2+k2 . We expand the distribution
T (z) = T0(z) + T1(z) + · · · in powers of the density ρ, as well as the IDoS. Then equation (8)
is solved recursively order by order. We easily obtain T1(z) from which we deduce

γ (E = k2 → ∞) 	 ρ

π

∫
dz

z

z2 + k2

∫
dv p(v)

[
arctan

z

k
− arctan

z − v

k

]
. (9)

This gives the general formula

γ (k2) 	 ρ

2

〈
ln

[
1 +

( v

2k

)2
]〉

v

, (10)

where the averaging is now taken over the δ-peak weights vn. This is the first term of a
‘concentration expansion’ that can be systematically developed [6] (equation (10) was derived
in section 10.4 of this latter reference for non-random weights vn. Additional averaging in
equation (10) follows from the property of additivity of the variable ξ(x)).

3. New energy dependences

We first consider the high energy Lyapunov exponent,
√

E = k � ρ,w, when the
weights are distributed according to (6). We write p1(v) = 1

w
f (v/w) where f (y) is a

dimensionless symmetric function such that f (y → ±∞) 	 C|y|−1−μ. We divide the

3
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integral γ 	 ρ
∫ ∞

0 dy f (y) ln
[
1 +

(
w
2k

y
)2]

into three parts: γ ∼ ρ
[(

w
2k

)2 ∫ 1
0 dy f (y)y2 +(

w
2k

)2
C

∫ 2k/w

1 dy y1−μ + 2C
∫ ∞

2k/w
dy y−1−μ ln

(
w
2k

y
)]

.

• For μ > 2 the Lyapunov exponent is dominated by the smallest y (�1). We obtain
γ ∝ ρ

(
w
k

)2
that corresponds to expand the logarithm of equation (10) for small v. This

is the result of equation (4): γ (k2) 	 1
8k2 ρ〈v2〉.

• For μ = 2, equation (4) cannot be used since 〈v2〉 = ∞. The integral giving the Lyapunov
exponent is dominated by the intermediate scale 1 � y � k/w:

γ (k2) ∝ ρ
(w

k

)2
ln

(
2k

w

)
. (11)

• For 0 < μ < 2, the Lyapunov exponent is dominated by the largest y (�k/w). We
obtain

γ (k2) ∝ ρ
(w

k

)μ

. (12)

The numerical dimensionless prefactors depend on the precise form of the distribution
and not only on its tail.

The fluctuations of the random weights can be further increased by considering a
distribution with tail:

p2(v) ∝ 1

|v| ln1+μ
∣∣ v
w

∣∣ for v → ±∞, (13)

for μ > 0. When μ > 1 we find that the Lyapunov exponent decays logarithmically with
energy

γ (k2) ∼ ρ

lnμ−1
(

k
w

) . (14)

The case 0 < μ � 1 is discussed in the following section.

4. Superlocalization

On the other hand, for distribution (13) with μ � 1, not only the second moment diverges
〈v2〉 = ∞, but the expression (10) shows that the Lyapunov exponent diverges as well:
γ = ∞. This indicates that the logarithm of the envelope of the wavefunction, ξ(x), presents
different scaling properties with x. In order to analyze this, we remark that the variable ξ(x)

is constant between two impurities and makes a jump �ξn
def= ξ

(
x+

n

) − ξ
(
x−

n

) ∼ ln|vn| across
the impurity n (see below, the section on numerics). Therefore ξ(x) behaves as the sum
of N ∼ ρx independent variables, each distributed according to a power law distribution
p(�ξ) ∝ �ξ−1−μ. Using well-known results (recalled in appendix A) we obtain

ξ(x) ∼ (ρx)1/μ for 0 < μ < 1 (15)

∼ (ρx) ln(ρx) for μ = 1. (16)

The envelope of the wavefunction presents a decay faster than a simple exponential. This
phenomenon is called superlocalization and has been recently studied for a discrete model
in [19]2. Characterization of the localization properties cannot be limited to the typical

2 Note also that such superlocalization ξ(x) ∼ x1+h/2 occurs for self-affine random potentials characterized by
long-range correlations 〈[V (x) − V (0)]2〉 ∝ |x|2h with h > 0 [11].

4
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behaviours (15), (16) since the variable ξ(x) presents large fluctuations. Its distribution is
characterized by a power law tail

P(ξ ; x) ∝ 1/ξ 1+μ (17)

with the same exponent as that involved in the distribution of the weights.

4.1. Conductance

We give another interpretation of the previous result in terms of the conductance of a finite
disordered interval of the length L. The dimensionless conductance is equal to the transmission
probability (the Landauer formula), and presents the same exponential decay as the square of
the wavefunction modulus. Therefore we can write g ∼ e−2ξ(L) (a more precise definition of
the reflection coefficient within the phase formalism can be found in [5]).

Let us first recall some well-known results valid for a potential with finite local fluctuations.
At high energy, when (4) holds, ξ(x) behaves like a Brownian motion with drift3 [5]:

ξ(x)
(law)= γ x +

√
γW(x), where W(x) is a Wiener process4. It follows that the distribution

of the logarithm of the conductance is Gaussian (ln g) 	 1√
8πγL

exp − 1
8γL

(ln g + 2γL)2

[21]. The typical value of the conductance is gtyp ∼ e−6γL (while (ln g)typ ∼ −2γL) however
fluctuations of the logarithm are associated with a much larger scale gfluct ∼ e−2

√
γL.

Distribution of the conductance in the Anderson model with power law disorder has been
studied in [17] where some power law distribution of the conductance was obtained for g → 0.

In the superlocalization regime, the behaviour (15) is associated with a decay of the
conductance g ∼ e−L1/μ

. The distribution (17) can be related to the conductance distribution:

(ln g) ∼
g→0

1

|ln g|μ+1
(18)

for 0 < μ � 1.

5. Localization for supersymmetric Hamiltonian

We consider another class of random Hamiltonians with the so-called supersymmetric structure

H = − d2

dx2
+ φ(x)2 + φ′(x) with φ(x) =

∑
n

ηnδ(x − xn), (19)

where ηn are dimensionless uncorrelated weights, each distributed according to a distribution
p(η). This Hamiltonian is interesting since it presents rather different spectral and localization
properties (in particular it leads to a delocalization transition as E → 0). It is related to several
other problems as well. For example it is the square of a Dirac Hamiltonian with a random
mass φ(x), introduced in various contexts of condensed matter physics; the problem can also
be related to classical diffusion in a random force field (see [6, 22, 23] for a review). We can
follow the same strategy: the Ricatti variable z = ψ ′

ψ
− φ obeys the Langevin-type equation

z′ = −E − z2 −2zφ(x) with multiplicative noise. Limiting distribution of the Ricatti variable
for a steady current −N(E) obeys the integral equation

N(E) = (E + z2)T (z) + ρ

∫
dη p(η)

∫ ze2η

z

dz′ T (z′). (20)

3 The fact that drift and the Gaussian fluctuations involve the same parameter is referred to as ‘single parameter
scaling’ [20] (see also [16]); it holds only at high energy since it relies on the decoupling between a fast variable (the
phase θ(x) introduced above) and the slow variable ξ(x).
4 a normalized free Brownian motion such that 〈W(x)〉 = 0 and 〈W(x)W(x′)〉 = min(x, x′).
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The Lyapunov exponent is now given by γ = 〈z〉 + 〈φ〉. Following the same perturbative
approach as before, we obtain

γ (E → ∞) 	 ρ〈ln cosh η〉η. (21)

For the supersymmetric Hamiltonian, when the average exists, the Lyapunov exponent reaches
a finite value at high energy (in contrast to the decrease of the Lyapunov exponent for the
Schrödinger Hamiltonian): for |ηn|  1 it takes the form γ (E → ∞) 	 1

2

∫
dx 〈φ(x)φ(0)〉.

Let us consider a power law distribution of weights p(η) ∝ 1/|η|1+μ. We see from (21)
that we have γ = ∞ in this case for μ � 1. The reason is similar to that discussed in the
previous paragraph for the Schrödinger equation with weights distributed according to (13).
Here the variable ξ(x) jumps by �ξn ∼ |ηn| across the impurity (see below). Therefore, for
the supersymmetric case, a power law distribution of the weights leads to the superlocalization,
equations (15)–(17).

6. Numerical calculations

We can easily study the evolution of the phase and envelope variables (2), (3) numerically.

We denote by θ±
n

def= θ
(
x±

n

)
and ξ±

n

def= ξ
(
x±

n

)
the value of the phase and the envelope just

before and right after the nth δ-peak. Between two impurities we have θ−
n+1 − θ+

n = k�n

and ξ−
n+1 − ξ+

n = 0. The length �n = xn+1 − xn denotes the distance between consecutive
impurities. It is distributed according to a Poisson law p(�) = ρ e−ρ�. The evolution of
the random variables across an impurity depends on the form of the random potential. We
introduce the notation �ξn = ξ+

n − ξ−
n = ξ−

n+1 − ξ−
n .

• For the Schrödinger Hamiltonian with potential (5) phase evolution is given by
cotg θ+

n − cotg θ−
n = vn

k
and evolution of the envelope by �ξn = ln sin θ−

n

sin θ+
n

= 1
2 ln

[
1 +

vn

k
sin 2θ−

n + v2
n

k2 sin2 θ−
n

]
.

• For the supersymmetric Hamiltonian (19) we have tan θ+
n = e2ηn tan θ−

n and �ξn =
1
2 ln sin 2θ−

n

sin 2θ+
n

= 1
2 ln[e2ηn sin2 θ−

n + e−2ηn cos2 θ−
n ].

IDoS is given by N(E) = limL→∞ θ(L)

Lπ
and the Lyapunov exponent by γ (E) = limL→∞ ξ(L)

L
.

To be precise we consider a specific distribution with the power law tail :

p1(v) = μ
∣∣ v
w

∣∣μ−1

πw
(
1 +

∣∣ v
w

∣∣2μ ) . (22)

This choice has the advantage that it is very easy to simulate since the cumulative distribution is
straightforwardly obtained. Using equation (10), we get the high energy Lyapunov exponent:
γ 	 1

sin
(

πμ

2

)ρ
(

w
2k

)μ
for 0 < μ < 2 and γ 	 2

π
ρ
(

w
2k

)2
ln

(
2k
w

)
for μ = 2 (both expressions are

valid for k � ρ,w). The case μ = 1 corresponds to a Cauchy law. The right-hand side of
equation (10) can be computed easily in this case and we obtain the expression γ 	 ρ ln

(
1+ w

2k

)
valid in a broader range of energy (for k � ρ but w arbitrary); at high energy we recover the
known energy dependence γ 	 ρ w

2k
(it can be recovered from discrete models [14, 7]). These

expressions are compared to the numerical results on figure 1 and work perfectly well.
Next we analyze the superlocalization regime: we consider the supersymmetric

Hamiltonian for weights ηn distributed according to a law similar to (22) for 0 < μ < 1.
The distribution P(ξ ; x) is plotted for different values of x on figure 2. In the inset the axes
are rescaled in order to check that, according to (15), the distribution has the form

P(ξ ; x) 	 1

(ρx)1/μ
�

(
ξ

(ρx)1/μ

)
, (23)

6
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Figure 1. For the Schrödinger Hamiltonian: Lyapunov exponent as a function of the energy for
weights vn distributed according to (22). Numerical results (continuous lines) are compared with
high energy expressions (dashed lines) derived in the text (no fit) for μ = 0.34, 1 and 2. Other
parameters are w = 1, ρ = 0.01 and number of impurities N = 106. Inset : Eγ (E) is plotted in
semilog scale for μ = 2 in order to check its logarithmic behaviour (dashed line corresponds to
equation (11)).

0 20000 40000 60000
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0.0001
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ζ=ξ/(ρx)
1/μ
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10
1

(ρ
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P
(ξ
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Figure 2. Superlocalization for the supersymmetric Hamiltonian. Distribution of the variable
ξ(x) for different values of x = L/4, L/2, 3L/4 and L. Parameters are: k = 10, ρ = 1,� = 0.1
(typical scale for weights ηn) and μ = 0.5. Number of impurities is N = 106 and L = 1000. In
the inset, straight line corresponds to equation (17).

where �(ζ) is a dimensionless function. After rescaling we see that the four curves
corresponding to different values of x perfectly collapse onto each other, apart from small
deviations corresponding to the smallest values of ξ and x. Finally we check that the tail of the

7
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Table 1. Energy dependence of the localization length for the Schrödinger Hamiltonian with the
random potential V (x) = ∑

n vnδ(x − xn) for different broad distributions of the weights vn.

Potential distribution Localization length
〈
v2
n

〉
< ∞ �loc ∝ E [6]

p(v → ±∞) ∝ 1/|v|μ+1 μ = 2 �loc ∝ E/ ln E

0 < μ < 2 �loc ∝ Eμ/2

p(v → ±∞) ∝ 1
|v| ln−1−μ

∣∣ v
w

∣∣ μ > 1 �loc ∝ lnμ−1 E

Superlocalization

{
μ = 1
0 < μ < 1

ξ(x) ∼ x ln x

ξ(x) ∼ x1/μ

distribution is indeed a power law, equation (17): in the inset of figure 2 rescaled distributions
are plotted on a log–log scale with �(ζ) ∝ ζ−1−μ. The agreement seems excellent.

7. Conclusion

We have analyzed the high energy localization length for random potentials with short-range
correlations and large local fluctuations such that the well-known result (4), leading to �loc ∝ E,
is not valid. We have studied localization for potentials made of superposition of δ-peaks.
Performing a concentration expansion, we have obtained two general high energy formulae
for the Lyapunov exponent: γ (E) 	 ρ

〈
ln

[
1 + v2

4E

]〉
v

[6] for the Schrödinger Hamiltonian and
γ (E) 	 ρ〈ln cosh η〉η for the supersymmetric Hamiltonian. These formulae have been used
to analyze the case of potential with large local fluctuations.

For the Schrödinger case, we have shown the relation between the distribution of the
weights of the δ-peaks and the energy decay of the Lyapunov exponent (the inverse localization
length �loc). Sufficiently large fluctuations of the weights, such that

〈
v2

n

〉 = ∞, lead to a stronger
localization effect characterized by an increase of �loc with energy slower than linear. These
results are summarized in table 1.

The understanding of fluctuations of the variable ξ(x) (i.e. of the localization length)
plays a major role to analyze universal statistical properties of Wigner time delay [8]. It would
be an interesting issue to study how the statistics of Wigner time delay are affected by the
unconventional localization properties analyzed here.
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Appendix

We recall well-known results on the distribution of the sum of independent and identically
distributed (i.i.d) random variables. Let us consider N i.i.d. positive variables yn and their
sum YN = ∑N

n=1 yn. If
〈
y2

n

〉
< ∞ the statistical properties of YN are given by the central

limit theorem for N → ∞: Gaussian distribution centred on 〈YN 〉 = N〈y〉 for a variance〈
Y 2

N

〉
c

= 〈
Y 2

N

〉 − 〈YN 〉2 = N〈y2〉c. If the distribution of the yn’s presents a power law tail
p(y) ∝ 1/yμ+1 with 0 < μ � 2 such that

〈
y2

n

〉 = ∞, the situation is different:

• For 0 < μ < 1 all moments of yn diverge. Let us consider the characteristic function
g(p) = 〈e−py〉. We can write g(p) = 1 − ∫ ∞

0 dy(1 − e−py)p(y) from which we see that

8
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g(p → 0) 	 1 − Cpμ where C is some constant related to the prefactor of the power
law tail of p(y). The characteristic function for YN reads GN(p → 0) 	 e−NCpμ

. This
shows that the related distribution PN(Y ) presents a similar power law tail and involves
the typical scale YN ∼ N1/μ.

• For μ = 1. A similar analysis gives g(p → 0) 	 1 − Cp ln 1/p and therefore
YN ∼ N ln N .

• For 1 < μ < 2 the first moment is finite 〈YN 〉 = N〈y〉 however fluctuations are larger
than in the normal case

〈
Y 2

N

〉
c
∼ N2/μ.

• For μ = 2 fluctuations are
〈
Y 2

N

〉
c
∼ N ln N .

• For μ > 2, the central limit theorem applies.
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